
Exhaustive substring search.

Algorithm by Knuth, Morris,

Pratt (KMP)

Lecture 04.02
by Marina Barsky

Strings

STRINGS ARE NATURAL GROUPINGS OF

SYMBOLS INTO SEQUENCES, WHERE THE

ORDER HAS A SPECIAL SIGNIFICANCE

≠

bad salad
sad ballad

a b d l s

Strings encode life

“In a very real sense, molecular biology is all

about sequences. It tries to reduce complex

biochemical phenomena to interaction

between defined sequences”
G. Von Heijne. Sequence analysis in molecular biology:

treasure trove or trivial pursuit (?). Academic press, 1987

Useful definitions: string and substring

■ A string S of length N is an ordered list of N elements written
contiguously from left to right

■ The elements are called symbols or characters

■ S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

Useful definitions: prefix and suffix

■ S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

■ S[1…j] is a prefix of S starting at position 1 and ending at position j

■ S[i…N] is a suffix of S starting at position i and running till the last
character of S

What is Suffix 4?

What is Suffix 1?

b a n a n a

1 2 3 4 5 6

Useful definitions: prefix and suffix

■ S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

■ S[1…j] is a prefix of S starting at position 1 and ending at position j

■ S[i…N] is a suffix of S starting at position i and running till N

b a n a n a

1 2 3 4 5 6

What is Prefix 4?

What is Prefix 1?

What is Prefix 0?

Useful definitions: proper substrings

■ S[1…j] is a prefix of S starting at position 1 and ending at position j

■ S[i…N] is a suffix of S starting at position i and running till N

■ S[i…j] is an empty string if i>j

■ A proper substring, prefix, suffix of S is respectively a substring,
prefix, suffix that is neither the entire string S nor the empty string

Useful definitions: proper substrings

■ S[1…j] is a prefix of S starting at position 1 and ending at position j

■ S[i…N] is a suffix of S starting at position i and running till N

■ A proper substring, prefix, suffix of S is respectively a substring,
prefix, suffix that is neither the entire string S nor the empty string

b a n a n a

1 2 3 4 5 6

Is Prefix 1 a proper prefix?

Is Prefix 0 a proper prefix?

Is Suffix 1 a proper suffix?

Pattern matching problem

■ Given a string P (of length M) called the pattern and a

longer string T (of length N) called the text, find all

occurrences, if any, of pattern P in text T

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Naïve exhaustive search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 2

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 3

Naïve method – what next?

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Start from 4

Naïve method – continue…

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 4

Naïve method – time complexity

■ How many character comparisons in total?

■ How did you compute the value?

■ Compute how many comparisons are required for

T=aaaaaaaaaa (N=10) and P=aaa (M=3)

➔ In the worst case, we start from each position i of T (there
are N such positions), and, for each i, compare M
characters

➔ For T=aaaaaaaaaa (N=10) and P=aaa (M=3) there are
exactly 24 comparisons, M*(N-M+1)

➔ The time complexity of the naïve algorithm is O(MN)

Can we do better? Motivation

■ A standard fetching time from sequential RAM is 358 MB
values per second (ref).

■ If we have 10 random sets of sequenced fragments from 3GB
human genome, then we need to search the text of a total
size 3*1010, which can be sequentially accessed in
approximately 3*108 values per second. We will spend 100
seconds on a linear time algorithm, but for the worst case we
need to multiply it by the value of M, which can be as large as
100!

■ We want the pattern search algorithm to perform at least in
time O(N).

http://cacm.acm.org/magazines/2009/8/34493-the-pathologies-of-big-data/fulltext

Dream goal: each character of T is

examined at most once

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

Is this algorithm correct?

Incorrect algorithm

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

No, we missed an occurrence of P starting at position 4

t citci

Shifting heuristics

■ If we failed to align the next character P[j] of P with the

current character of T, start the next comparison from

the next occurrence of a character P[1] to the left from j

■ How do we know the position in T of such a character?

Shifting heuristics

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci

t citci

t citci

Seems good!

Shifting heuristics

■ What about our worst-case example:

T=aaaaaaaaaa (N=10) and P=aaa (M=3)?

KMP idea

■ When we have aligned the prefix of P with k characters

of T, we know what these first k characters of T are (they

are equal to those of the prefix P[1…k] of P).

■ From this information we can deduce the place where to

start the next comparison.

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

We have aligned 6 characters

The next occurrence of a pattern has to start

with tic and we know that the last characters of a

match were tic, since the suffix of P starting at

position 4 is equal to a prefix of P of length 3

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

Therefore we can set a start of the next comparison to 3 positions backwards from the

current position, and we don’t need to compare the first 3 characters again, since we

know that they match

Thus, we can continue the comparison from the next character of P (and T).

In this case, we never go back to look at characters of T that were already compared.

t citci

KMP intuition – overlap function for P

In order to know where to position the start of the next comparison, we need

to know the values of an overlap function for P, namely:

For each position j in P, the maximal length of a substring which is at the

same time a proper prefix of P and a proper suffix of substring P[1, j].

Before we start the search, we need to compute an overlap function for P –

we need to preprocess pattern P.

t citci

654321

citcit

KMP intuition – overlap function for P

For j=1, OF=0 (t is not a proper suffix of a substring t, it is the entire t!)

t citci

654321

cct

0

KMP intuition – overlap function for P

For j=2, OF=0 (the only proper suffix of ti, the suffix i, does not have overlap

with any prefix of ti)

t citci

654321

cct

00

i

i

KMP intuition – overlap function for P

For j=3, OF=0 (suffixes ic, c do not have an overlap)

t citci

654321

cct

000

i

KMP intuition – overlap function for P

For j=4, OF=1 (t is a proper suffix of a substring tict, and the prefix of P)

t citci

654321

cct

1000

i tt

KMP intuition – overlap function for P

For j=5, OF=2 (ti is a proper suffix of a substring ticti, and the prefix of P)

t citci

654321

cct

21000

i tct i

KMP intuition – overlap function for P

For j=6, OF=3 (tic is a proper suffix of a substring tictic, and the prefix of P)

t citci

654321

cct

321000

i

c

i
tct i c

Assume, for now, that the OF values for P are pre-computed

KMP search: match found

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

321000

j=7

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1)

i=7

KMP search: overlap 3

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

No need to compare

these 3 characters,

we know that they

match – we just

compared them

321000 Next alignment starts at: k=4

KMP search: overlap 3

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 4

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1) = 10-3=7

i=10

j=7

321000

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Continue comparing T[10] and P[4]321000

KMP search: overlap 1

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

T[11] and P[5] do not match. Consult OF(4)=1. next potential

match can start at i-OF(j-1)=10, and the first character is already

matched.

j=5

i=11

321000

KMP search: overlap 0

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Here we only matched with the first character of P, the

value OF(1)=0, thus we don’t use any info to shift i. We

reset pattern position j to 1, without changing i.

j=2

i=11

321000

KMP search: no matches at all

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

P[1] does not match T[11]. We did not match any

characters, so we advance i and reset j, starting a new

alignment at T[12] with P[1] (as we would do without KMP)

j=1

i=11

321000

KMP search: overlap 0

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

etc…

i=12

654321

citcit

321000

j=1

KMP– in “English”

Setup pointers i and j to point to the current character of T and P respectively

DO

Advance both pointers as long as T[i] matches P[j]

If you advanced all M characters (j=M)

Report occurrence of P in T (at position i-M)

Use an overlap function ol(M) to compute pattern shift

If j≠ M and the next characters T[i] and P[j] does not match:

See how many characters matched - 3 cases:

1. matched 0 characters: advance i, restart j=1 (as we would do without KMP)

2. ol(j-1) = 0. Previous match does not help with alignment,

so we need to start comparing P[1] with T[i] without advancing i

3. ol(j-1)>0. Compute pattern shift and continue comparing from the next j

UNTIL i < N

T:= 'tictictictactictictic'

P:= 'tictic'

N:= len(T)

M:= len(P)

ol:= [0, 0, 0, 1, 2, 3]

manually precomputed overlap

function for P

Full Pseudocode (zero-based)
matches: = empty list

i: = 0 # current position in T
j: = 0 # current position in P

while i is within bounds
loop through both i and j as long as characters T[i] and P[j] match

if matched all M characters
add position (i - M) to matches

if no characters matched
advance i to the next position in T

else if some characters matched
consult the overlap function for the matched prefix of P
if overlap = 0

we have no information about characters in T
we restart j, and continue matching from the same T[i]

else:
skip characters in P according to OF

return matches

KMP algorithm: time complexity

Theorem: The number of character comparisons in the

KMP algorithm is at most 2N

Proof

❑ Divide the algorithm into compare/shift parts. Let a single

phase include the comparisons done between 2 successive

shifts. We see that during 2 successive shifts at most 2

comparisons are done for each character of T.

❑ Since pattern is never shifted left, the total number of

character comparisons is bounded by N+s, where s is the

total number of shifts. But s<N, since after N shifts the right

end of P is certainly to the right of the right end of T, so the

total number of comparisons done is bounded by 2N

Worst-case example – iterations 1,2

1 1 1 1 1

a a a a b a a a a a

a a a a a

We have aligned pattern P, by performing so far 1 character comparison

for each of 5 characters of P

Now we need to restart the comparison from the position 2 of T

1 1 1 1 2

a a a a b a a a a a

a a a a a

Counting

number of times

the character is

accessed

Worst-case example – iteration 3

1 1 1 1 2

a a a a b a a a a a

a a a a a

We have compared character b of T already 2 times

Next we start by aligning pattern starting at position 3 of T

1 1 1 1 3

a a a a b a a a a a

a a a a a

Worst-case example – iteration 4

1 1 1 1 4

a a a a b a a a a a

a a a a a

Worst-case example – iteration 5

1 1 1 1 5

a a a a b a a a a a

a a a a a

For now, we have compared character b of T 5 times (as the length of

the pattern), but during this comparison we have shifted the left end of P

5 positions forward. Since we did not compare anymore any character to

the left from b, we did in total not more than 5*2 comparisons in order to

process the 5 first characters of T.

This is true in general: the total number of character comparisons in KMP

is bounded by 2N

Readings

■ http://en.wikipedia.org/wiki/Knuth-Morris-

Pratt_algorithm

■ http://www.ics.uci.edu/~eppstein/161/960227.

html

http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://www.ics.uci.edu/~eppstein/161/960227.html

Overlap function

computation in time

O(M)
Optional material

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

where do we find OF[j]?

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

then OF(j) is less than OF(j-1)

We look at v= OF(j-1) and check

again the next character

P[OF(v)+1]

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)=1] do not

match

we look at v=OF(j-1) and check

again the next character

P[OF(v)+1]

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)] do not match

then OF(j) is less than OF(j-1)

We look at v=OF(j-1) and check

again the next character

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

P[2]≠P[8]

v=OF(4)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

v=OF(4)

P[1]=P[8], thus

OF(8)=OF(1)+1=1

Why is this correct

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We know that the substring

tictict ending at position 7 had

suffix tict which is overlapping

with the prefix tict of the

pattern

We also know that we cannot

extend this overlap since P[8]

and P[5] do not match

Now we want to check what

overlap had the prefix tict

with the prefix of the entire

pattern, since the new

overlap we are looking for is

less than these 4 letters

We look at position 4 in OF

table and find that the next

overlap for substring of length

4 is of length 1

Why is this correct

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We check if P[1+1] matches

P[8]

They do not

We repeat and by the same

logic we are going to the

entry 1 of OF table, and find

that there is no overlap for

this value: OF[1]=0

So we check if

P[0+1] matches P[8]

They do, so the

OF[8]=OF[1]+1=1

Overlap function – pseudocode (0-based)
ol: = table of size M with all zeroes

ol[0]: = 0 # first overlap is always 0

for pos from 1 to M -1:
prev_overlap: = ol[pos - 1]

if P[pos] = P[prev_overlap]: # if next character is the same
ol[pos]: = prev_overlap + 1 # overlap becomes bigger

else: # the suffix does not extend previous suffix
while P[pos]!=P[prev_overlap] and prev_overlap ≥ 1:
try extend a smaller prefix - based on P [ol[pos-1]]

prev_overlap: = ol[prev_overlap - 1]

if P[pos] = P[prev_overlap]:
ol[pos] = prev_overlap + 1

if we did not find any overlap to extend
then ol[pos] remains 0

return ol

Overlap function: time complexity

The computation of OF is performed in time O(M) since:

• the total complexity is proportional to the total number of times
the value of v is changed

• this value is increasing by one (or remains zero) in the for loop,
and in total, during the entire algorithm, it is increasing not more
than M times

• in addition, the value of v is decreasing inside the while loop, but
since v is never less than zero, the total number it is decreasing
can not be more than the number it is increasing, therefore is
bounded by M too.

The time is therefore less than 2M: O(M)

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

We know that OL(23)=11

This means that the sequence of the first 11 characters of P is the same as

that of the last 11 characters of P[1….23]

However, the character P[11+1]=r does not match the character P[23+1]=t

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

The maximum possible overlap is less than 11

The next maximum possible overlap can be found if we look at position 11 of

the OF table and see what overlap this substring had

The substring P[1…11] has a maximum overlap of length 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

Let us check if this value is also the maximum overlap for the substring P[1…24]

For this we check the character next to P[5], which is p, and it does not match

our t

Therefore, the overlap we are looking for is less than 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

3

We check the next possible value by considering the overlap value for the

substring P[1…5]

This value is 2. Is this value of an overlap good for P[1…24]?

We check P[2+1]=t, and P[24]=t

Thus, the overlap for the substring P[1…24] is 2+1=3

Check your understanding: Practice

jumps on the following pattern

■ aaahamaaahamamaaahamaaaa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 3

